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ABSTRACT 
This paper consider a multi-product EOQ model with fuzzy for exponential increasing demand and Weibull 
distribution deterioration with Budget constraints and Shortages by integrating the product pricing and 
order sizing decisions. Minimize the total cost and illustrate with an example using LINGO.  
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cut andGlobal criteria method.  
 

INTRODUCTION 
The inventory models are always formulated and 
solve to determine the optimal stock of 
commodities to meet the future demand which may 
either arise at a constant rate or may vary with 
time. When the items of commodity are kept in the 
stock as an inventory for fulfilling the demand, 
there may be the deterioration of items in the 
inventory system which may occur due to one or 
many factors viz storage condition, weather 
condition etc. Some items in the inventory system 
may deteriorate where as others can be stored for 
an indefinite period without deterioration. The 
deterioration is usually a function of the total 
amount of inventory on hand. Deterioration is 
defined as decay, damage or spoilage. Food items, 
photographic films, drugs, pharmaceutical, 
chemicals, electronics compounds and radioactive 
substance are some example of items in which 
sufficient deterioration may occur during the 
normal storage period of the units and 
consequently this loss must be taken into account 
while analyzing the inventory system. Inventory 
models in which unit deteriorate while in storage, 
have drawn attention of various researchers in 
recent years. Decay in radioactive elements, 
spoilage in food grain storage, pilferages from on 
hand inventory etc. are continuous in time and 
roughly proportionally to the on hand inventory. 
 
The classical EOQ model is based on the assumption 
that the demand rate for the product is constant 
and that it is independent of the price of the 
product. This is not true in many situations, in the 
case of a monopolistic firm. A monopolist always 
influences the demand of the product by 
manipulating its price. In such cases the demand 
rate should be treated as a decision variable. 
Moreover, the order size of a product should 
normally depend on its price within (Whitin, 1955) 
formulated an EOQ model taking the demand to be 
a negatively sloped function of the price. However, 
he did not solve the model explicitly. Porteus 
(1485) discussed the issue of setup reduction in an 
EOQ model in which the demand rate was taken as 
a decision variable depending on the price. Cheng 
(1990) presented a multi-product EOQ model that 
integrated pricing and order sizing decisions to 

maximize profit with storage space and inventory 
investment constraints. By removing some 
shortcomings of the model, it was further improved 
by Chen and Min (1994). Later, different part of it’s 
also improved by Intrilligator (1971), Covert et al., 
(1973), and Philip (1974). Agarwal and Jain (1997). 
In this all models, deterioration and Shortages in 
inventory are not taken into account. These being 
realistic factors associated with the inventory of 
any item, should be taken into account to make the 
model more realistic. Agarwal and Jain (1997) 
consider shortages. But in Chakraborty et al., 
(1998), Dev and Chaudhuri, (1987), Dave, (1989), 
Goswami and Chaudhuri, (1991) and Jalan et al., 
(1996), Kundu and Chakraborty (2009) they 
consider deterioration and Shortages. 
 

In this paper, we consider a multi-product EOQ 
model that—i) integrating the product pricing and 
order sizing decisions, ii) allow shortages in 
inventory and iii) deals with two parameters 
Weibully distribution deterioration items. Demand 
is assumed to be having one parameter exponential 
distribution. Our object is to minimize the total cost. 
We take into consideration two practical 
constraints, namely, storages space and inventory 
investment limitation. This paper is a extension of 
Jalan and Chaudhuri, (2000). Chen and Min (1994) 
considered limitation on the total inventory 
carrying cost to be the limitation on inventory 
investment. We do not appreciate this concept 
limitation of inventory investment. In our model, 
the inventory investment is the money required for 
procuring the inventory by purchase or production 
as the case may be. Our problem is formulated as a 
constrained non-linear optimizing problem which 
can be solved by applying the Khun-Tucher 
optimality conditions. 
 

Notation and assumption: We consider here a 
multi-product EOQ model which consists of product 
of different types and there are restrictions on the 
maximum amount of capital invested in stock at any 
time and also on the maximum storages space 
available in the warehouse. 
The notations for the model are as follows: 
n=total number of types of product produced by the 
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firm,    Ri=demand rate for the product i, qi=order 
size the product i, si=shortage size of the product i,    
Qi(t)=inventory of the ith item at any time t, 
C11=holding cost per unit time for product i, 
C12=shortage cost per unit time for product i, 
C13=setup cost for product i per production run, 
Ri=the unit cost of production of product i, T=total 
cycle time, fi=storage space requirement per unit of 
product i, Pi=unit selling price of product I, F=total 
fixed cost of production and administration, A=total 
storage space available, M=the amount of capital to 
be invested on inventory, i =fraction of the on 
hand inventory of the product I which deteriorates 
per unit time, 0‹ ‹1, C(q, s, t)=total cost of the 
products.    
 

The following basic assumptions about the 
model are: 
1. All products have an equal replenishment cycle 

of length T. This facilitates operational 
convenience. This practice is usually followed in 
multi-product inventory models. If a firm 
dealing with (purchase or production) several 
types of products, initiates procurement actions 
for different products at different times, the 
situation will be operationally unchangeable and 
setup(or ordering) cost will have to be incurred 
each time as a procurement action is initiated. 

2. Replenishment of the products is instantaneous 
with zero time. 

3. Shortages in inventory of each product are 
allowed.  

4. The demand rates are increases exponentially 
and for ith item is given by the function Ri=aebt, 
a>0, 0<b<1. 

5. The rate of deterioration at any time t>0 follow 
the two-parameter weibull distribution as 
θi=αβt(β-1), where α (0<α<1) is the scale 
parameter and β(>0) is the shape parameter. 

6. A deteriorating item neither repaired nor 
replaced during the cycle.                    

 

The Model: The amount of stock for the ith item is qi 

(i=1, 2… n) at the time t=0. In the interval [0, T], the 
inventory level gradually decreases mainly to meet 
demands and partly for deterioration. By this 
process, the inventory level reaches zero at time t1 
(<T) and then shortages are allowed to occur in the 
interval [t1, T]. The cycle then repeated itself. The 
amount of shortages for the ith item is si (i=1, 2… n) 
at time t=T. The differential equations for the 

instantaneous inventory Qi (t) of the ith item at any 
time t in [0, T] for exponential demand and weibull 
distribution deterioration, are given by 

dt
tdQi )(

 + αβt(β-1) Qi (t) = - aebt, 0 ≤ t ≤ t1 (1) 

dt
tdQi )(

 = - aebt, t1 ≤ t ≤ T   (2)  

The boundary conditions are:                   
Qi(0)=qi,    Qi(t1)=0  and   Qi(T)= - si (3)   
 
The solutions of the differential equation (1) and 
(2) are given by 
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2
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This gives the value of t1 where the shortage starts. 
Now, The total inventory of the  ith  item in [0, t1] is 
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Total deterioration of the ith  item in [0, t1] is 
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Total shortages of the  ith  item in [0, t1] is  
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T
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  (9) 

The total cost for n-items is C (q, s, T) = (Setup cost 
+ Production cost + Inventory holding cost + 
Deterioration cost + Shortage cost) for n-items + 
Fixed cost 
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   Total cost per unit cycle is    C (q, s, T) 
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Now, our object is to minimize the total cost subject to the storage and inventory investment constraints. The 
problem is as Minimize C (q, s, T) 
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Where   qi ≥0, si ≥0, T≥0 . Again, our object is to maximize the total cost subject to the storage and inventory 
investment Constraints. The problem is as  Maximize C (q, s, T) 
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Where   qi ≥0, si ≥0, T≥0 , The numerical example is discussed later after its fuzzy model. 
Fuzzy: Real world problems are generally 
associated with different types of uncertainties and 
imprecision’s. In the past, a considerable amount of 
effort was made to model those uncertainties and 
imprecision’s. Prior to 1965, people used to 
consider probability theory as the prime agent for 
dealing with uncertainties. It is to be noted that the 
above logic uses the concept of classical or crisp set 
theory. Prof. Zadeh argued that the probability 
theory can handle only one out of several different 
types of possible uncertainties. Thus, there are 
some uncertainties, which cannot be tackled using 
the probability theory. So, to handle this we have to 
require a new concept, which is known as fuzzy. It 
has two parts, element is one and the membership 
function of the element is the other. In real life, we 
cannot predict to determine the exact demand. We 
can consider only the certain approximation of the 
demand. So the demand to be consider as fuzzy.  
 

Let, the demand and deterioration are as Ri = aebt, 
a>0, 0<θ<1 And  θi = αβtβ-1, 0<α<1,   β>0, We 
consider ‘a’ in demand as a triangular fuzzy 
number, and defined as a͂= (a1, a2, a3). Then the 
corresponding membership function is defined as  
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α-cut of a fuzzy set A(x): It is a set consisting of 
elements x of the universal set X, whose 
membership values are either greater than or equal 
to the value of α. It is denoted by the symbol 

)(xA
 and is defined as )(xA

 = {x / µA(x) ≥α}. 
Taking α-cut of a~ , Due to over lacking of α, we 
consider here η-cut as α-cut and we have 
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i.e.   x≥a1+η (a2-a1) and x≤a3-η (a3-a2). 

So an η-cut of a~ can be expressed by then following 
interval   

)](),([)(~
233121 aaaaaaa   , 

η ]1,0[  where )(a =a1+η(a2-a1) and 
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)(a =a3-η(a3-a2) are known as lower cut and 
upper cut respectively. 
 

Fuzzy Model: The system of equation for the given 
problem in [1, 0] as  

dt
tdQi )(

 + αβt(β-1) Qi (t) = - a͂(η)ebt, 0 ≤ t ≤ t1 . (17)                    

dt
tdQi )(

 = - a�(η)ebt  , t1 ≤ t ≤ T      (18)                    

With the boundary conditions are:  Qi(0)=qi, 
Qi(t1)=0 and Qi(T)= - si. Now using η-cut the system 
of equation (14&15) can be rewritten as 
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Where, )(a =a1+η (a2-a1) and )(a =a3-η (a3-
a2) are the lower cut and upper cut respectively. 
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Where, )(a =a1+η (a2-a1) and )(a =a3-η (a3-
a2)

 
NOW, The total upper inventory of the  ith  item in [0, t1] is  
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Similarly, The total lower inventory of the  ith  item in [0, t1] is 
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Where, )(a =a1+η (a2-a1) and )(a =a3-η (a3-a2) Total upper deterioration of the ith  item in [0, t1] is 
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Total lower deterioration of the ith  item in [0, t1] is 
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Where, )(a =a1+η (a2-a1) and )(a =a3-η (a3-a2) Total upper shortages of the ith item in [t1, T] is    
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Where, )(a =a1+η (a2-a1) and )(a =a3-η (a3-a2) 
The total upper cost for n-items is C(q,s,T) = (Setup cost + Production cost + Upper inventory holding cost+ 
Upper deterioration cost  + Upper shortage cost) for n-items + Fixed cost 

 



Global J. of Engg. & Appl. Sciences, 2011: 1 (4) 

Global Journal Engineering and Applied Sciences - ISSN 2249-2631(online): 2249-2623(Print) - Rising Research Journal Publication 173 

FT
a
esCrbtta

bttbttCaqttCtrrC

bt
ii

i

iii

n

i
iii





























]
2

)
)2(21

()(

)
)3)(2(2)2)(1(62

()()}
1

({[

12
2

2
1

1
1

3
1

2
1

3
1

2
1

1

1
1

11
1

13





















Where, )(a =a1+η (a2-a1) and )(a =a3-η (a3-a2). The total lower cost for n-items is C (q,s,T) = (Setup 
cost + Production cost + lower inventory holding cost + Lower deterioration cost + lower shortage cost) for 
n-items + Fixed cost 
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Where, )(a =a1+η (a2-a1) and )(a =a3-η (a3-a2). Now, our object is to minimize the total upper cost 
subject to the storage and inventory investment constraints. Then the problem is as Minimize C (q, s, 
T)
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Where   qi ≥0, si ≥0, T≥0 and )(a =a1+η (a2-a1) 
Similarly, our object is to minimize the total lower cost subject to the storage and inventory investment 
constraints. The problem is as   Minimize (q, s, T)            
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Where   qi ≥0, si ≥0, T≥0 and )(a =a3-η (a3-a2) 
 

Numerical Example:  
CASE—1: We consider the values corresponding to 
the variables to the problem mentioned above are 
as follows: Let, f1=$24, f2=$28, α=0.006, β=1.5, 
a=100, b=0.03, A=$1400, M=$1000, C11=$5, 
C12=$4.5, C21=$13, C22=$14.7, C31=$100, C32=$100, 
T=1, r1=$18, r2=$20, S1=18, S2=20; F=$50; Then the 
optimum minimized cost is Min.C (q, s, T) 
=$1091.789. And for a1=50, a2=100, a3=150, η=0.3, 

)(a =65, )(a =135. Then the optimum 
minimized upper cost is Min.C (q, s, T) =$1099.308. 
Then the optimum minimized lower cost is                                
Min.C (q, s, T) =$1079.924 
CASE—2: Again let, f1=$20, f2=$22, α=0.006, β=0.4, 
a=100, b=0.03, A=$1600, M=$1200, C11=$5, 
C12=$5.2, C21=$14, C22=$15, C31=$100, C32=$100, 
T=1, r1=$15, r2=$12, S1=3, S2=6; F=$50; Then the 
optimum maximize cost is Max.C (q, s, T) 
=$1126.347. And for a1=50, a2=100, a3=150, η=0.3, 

)(a =70, )(a =130. Then the optimum 
maximize upper cost is Max.C (q, s, T) =$1128.890. 
Then the optimum maximized lower cost is Max.C 
(q, s, T) =$1120.947.Finally, we optimize the cost 
function using the method of Global Criteria 
method, defined as: 
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Global Criteria Method: The model represented by 
(11), (12) & (13) is a multi-objective model which is 
solved by Global Criteria (GC) Method with the help 
of Generalized Reduction Gradient technique. The 
Multi-Objective Non Linear Integer Programming 
(MONLIP) problems are solved by Global Criteria 
Method converting it into a single objective 
optimization problem. The solution procedure is as 
follows: 
Step-1: Solve the multi-objective programming 
problem by (11), (12) & (13) as a single objective 
problem using one objective at a time ignoring the 
other. 
Step-2: From the result of Step-1, determine the 
ideal objective vector, (say minmin ,  TCTC ) and 

(say maxmax ,  TCTC ). Here the ideal objective 
vector is use as a reference point. The problem is 
then to solve the auxiliary problem: 
Min (GC) =Minimize 

{( ppp
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TCTC
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minmax

min

minmax

max
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
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(41) 
Where1 p< . As usual value of p is 2. The 
method is also sometimes called     compromise 
Programming. Since, 
TC+=$1126.347;

947.1120$;890.1128$ maxmax   TCTC ; 
TC-=$1089.633;  

;861.1076$;308.1099$ minmin   TCTC  
Minimize (GC) =$0.9597188. 
 

CONCLUSION 
The model presented above is distinctly a 
significant improvement for exponential increasing 
demand and weibull distribution deterioration on 
the following accounts: It takes into account the fact 
that physical goods kept in stock undergo decay or 
deterioration over time. It corporate occurrence of 
shortages in inventory into the model. It is an 
established fact in the inventory literature that the 
average system cost can be significantly reduced by 
permitting shortages in inventory. The third point 
of departure lies in the constraint on inventory 
investment. They imposed a limitation on the 
amount of the total inventory carrying cost.  They 
could not provide always numerical example due to 
non-availability of a suitable software package, but 
we provide a numerical example using Global 
criteria method and LINGO. 
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