
Global J. of Mech., Engg. & Comp. Sciences, 2012: 2 (2)

100 ISSN 2277-6664(Online):2249-3468(Print) - Rising Research Journal Publication

Research Paper: Ponnamanda Bhavani et al., 2012: Pp.100-103

A NOVEL APPROACH FOR DETECTING AND PREVENTING CROSS SITE SCRIPTING AND HTTP
PARAMETER POLLUTION

Ponnamanda Bhavani, A., Rajani Devi, S.B and K. Syamasundararao

Dept of Information Technology, Nalanda Institute of Technology

ABSTRACT
Present situations, the most critical attacks are those that combine Cross site scripting techniques to access
systems and Hypertext Transfer protocol parameter pollution techniques to access the information by
polluting the HTTP parameters. The potential damage associated with this kind of threats, the total absence
of background and the fact that the solution to mitigate these vulnerabilities must be worked together with
programmers, systems administrators and database vendors justifies an in-depth analysis to estimate all the
possible ways of implementing this technique. It is a quite simple but effective hacking technique. HPP
attacks can be defined as the feasibility to override or add HTTP GET/POST parameters by injecting query
string delimiters. It affects a building block of all web technologies. We have to investigate business logic
flaws triggered by HPP. As we know, it is tricky and time consuming since manual testing is required. In this
paper we are proposing a novel approach to prevent http parameter pollution using reverse proxy. This
approach provides a mechanism of records HTML response in order to test the application behavior as well
as unexpected exploits.
Keywords: HPP, HTTP, Reverse proxy and XSS.

INTRODUCTION
Unlike early Web sites, which were merely meant to
deliver text in a practical fashion, nowadays sites
are not only capable of hosting rich content, such as
images, videos, and audio material, but also provide
platforms for users to contribute such data and
share it with the rest of the world. The goal of the
XSS attack is to steal the client cookies, or any other
sensitive information, which can identify the client
with the web site. For example, in one audit con-
ducted for a large company it was possible to peek
at the user’s credit card number and private infor-
mation using a XSS attack (Hallaraker and Vigna,
2005). This was achieved by running malicious Ja-
vaScript code at the victim (client) browser, with
the “access privileges” of the web site. These are the
very limited JavaScript privileges which generally
do not let the script access anything but site related
information. It should be stressed that although the
vulnerability exists at the web site, at no time is the
web site directly harmed. Yet this is enough for the
script to collect the cookies and send them to the
attacker. The result, the attacker gains the cookies
and impersonates the victim. As long as the input
provided by users is benign and the Web applica-
tions are used as intended, the challenges are easily
met by developers and service providers. However,
for various reasons, such as simple curiosity, de-
structive intentions, or hope for financial profit,
there will always be people who aim to exploit Web
sites and their users to their advantage. Therefore,
even though users expect modern Web services to
integrate their content seamlessly and effortlessly
into the provided applications, protection of their
local computer systems is required, when viewing
Web content created and submitted by potentially
malicious entities. There is no significance or any
type of improvements related to HTTP parameter

pollution (Endler, 2002). But it seems to be very
simple but very effective.

Http parameter pollution continuously leads the
most wide spread application vulnerabilities, Open
Web Application Security Project (Gundy and Chen,
2009). Recently, Yahoo Mail affected by Http para-
meter pollution (Kirda et al. 2006). Many of the
banking applications are vulnerable to http parame-
ter pollution. PayPal faces the problem of tampered
refund transactions due to http parameter pollu-
tion. Http parameter pollution client side is about
injecting additional parameters to links and other
src attributes. The precedence of GET/POST/Cookie
may influence the application behaviors and it can
also be used to override parameters
Apache Tomcat/6.0.18
POST /foo?par1=val1&par1=val2HTTP/1.1
Host: 127.0.0.1
FIRST occurrence, GET parameter first
Apache Tomcat/5.0.8
POST /foo?par1=val1&par1=val2HTTP/1.1
Host: 127.0.0.1
Last occurrence, GET parameter first
According to OWASP Strawman Classification (Jo-
vanovic et al., 2006). HPP will divide into following
categories:

Client‐side
First order HPP: Attacker can override the action
parameter value to edit then get the information
from user. This seems very simple and also does not
contain any XSS attacks also but it should reflect in
application behavior. It is usually done by masque-
rading the visual link with actual link.
Second order HPP: This is completely related to
the functionalities of link or form. But it is almost
related to Anti-Cross site scripting forgery and func-

Global J. of Mech., Engg. & Comp. Sciences, 2012: 2 (2)

101 ISSN 2277-6664(Online):2249-3468(Print) - Rising Research Journal Publication

tional UI readdressing. It was stored in persistent
manner.
Third order HPP: This is completely related to
parsing unexpected parameters and it generates the
HPP using JavaScript regular expressions. It is
about to use of HPP on polluted parameters. It is
usually called as content pollution.
Standard HPP: The frontend will build the
back‐end request based on application manages the
parameter occurrences. This attack was completely
depending on the application behavior and busi-
ness logic implementation. The same attack was
injected on Yahoo mail also. Attacker sends payload
containing additional parameters injected in reci-
pient parameters. Depending on Front end server
and back end server last occurrence parameter ac-
tion will be performed. It is very effective attack on
bank transactions.
Second order HPP: Uniform resource locator could
be affected as well as if regular expressions are too
permissive. This HPP attack was completely related
to regular expressions. Even though regular expres-
sions are very useful for validation but they are
very effective and easy to use for finding the URL
parameters.

The main contributions of this paper summarized
as follows:
 We introduce this approach, a solution for
detecting and preventing http parameter pollution
using reverse proxy (Peter Wurzinger et al., 2009)
 In contrast to previously proposed me-
thods, it does not require any manual testing
 It is not only restricted to HPP also it can
also detect XSS and other attacks.

OUR APPROACH
HPP tester operates on a reverse proxy, which re-
lays all traffic between the Web server that should
be protected and its visitors (as depicted in Figure
1). The proxy forwards each Web response, before
sending it back to the client browser, to a Java-
Script/HPP detection component, in order to identi-
fy embedded HPP content. In the JavaScript detec-
tion component, HPP tester puts to work a fully
functional, modified Web browser, that notifies the
proxy of whether any scripts and polluted parame-
ters are contained in the inspected content and it
will record the response in a log file. In order to
detecting the malicious content and benign input
JavaScript and polluted parameters we are modify-
ing the web application. In this paper, we are pro-
posing a new novel approach to detecting and pre-
venting HPP as well as XSS using reverse proxy
(Cache). It was very simple and easy to deploy(as
depicted in Figure 2).

METHODOLOGY
 First we request a page of the original web
application.

 The requested URL is received by the Proxy
(cURL) and writes into the HPP tester (cache).
 Then Input filtering is performed in the
requested URL by checking the query String.
 If found any parameter pollution (or) cross
site scripts the request is transferred back to the
client (Browser).
 If the requested URL is correct, it is sent to
the back-end server.
 To summarize, the main components of
HPP tester are:
 A HPP detection component, which, given
the Web server’s response, is capable of determin-
ing whether script content/polluted parameter is
present or not.
 A reverse proxy installed in front of the
Web server, which intercepts all HTML responses
from the server and subjects them to analysis by
the HPP detection component.
 A set of scripts/parameters to automatical-
ly encode/decode scripts.

 IMPLEMENTATION
Web Application Implmentation: Generally, in
order to locate legitimate scripts and additional
parameters in the original Web application, it is
advisable to utilize a similar mechanism as the HPP
detection component later used to identify mali-
cious parameters (as described in section B). There-
fore, the first step for deploying HPP tester is to
identify all legitimate script calls and polluted pa-
rameters in the original Web application, and to
replace each one by a unique identifier for scripts
and for parameters a log file.

There are three requirements for a unique identifi-
er: First, it must not contain any valid HTML tags,
Second, it must not contain what would be inter-
preted as JavaScript by a browser, so that when
rendering a page it is safe to conclude that all script
executions stem from illegitimately injected scripts.
Third, the mapping must be reversible, so that after
probing a page for scripts, the original condition
with functional JavaScript code can be reestab-
lished.For Additional parameters first we have to
find the query string delimiter and split the url into
strings based on delimiter and decode the parame-
ters when those are in encoded format.So it is very
is to find the number of parameters that are to be
processed excess. For our prototype implementa-
tion, we defined a set of strings that directly indi-
cate the presence of JavaScript code, such as the
script tag and also it will detect the parameters that
are to be added additionally to url.

HPP tester component: Even though there are ex-
act specifications on how an HTML parser is sup-
posed to identify and interpret JavaScript code,
browsers often attempt to compensate for Web de-
velopers’ mistakes and also process and execute
scripts that do not match the specification. Not only

Global J. of Mech., Engg. & Comp. Sciences, 2012: 2 (2)

102 ISSN 2277-6664(Online):2249-3468(Print) - Rising Research Journal Publication

does this lead to incompatibilities between different
browsers and their according parser implementa-
tions, but it also opens unforeseeable possibilities
for a Web developer to initiate a script execution.
For this reason, crafting a custom parser and basing
the decision on whether it contains a script or not
on its output and url additional parameters and
content pollution, is likely to produce unsatisfactory
results. More precisely, a parser that strictly follows
the specifications would miss certain malformed
scripts and last occurance parameters that a
browser would execute. For this reason, we chose
to put a new version of an actual Web browser to
work in the JavaScript/HPP detection component,
in order to render the page and decide whether
there is script code included or paramters are pol-
luted. This new version web browser will works for
any type of browser.

Reverse Proxy: We adapted the cURL (Scott and
Sharp, 2002) is a computer software project provid-
ing a library and command-line tool for transferring
data using various protocols. The cURL project pro-
duces two products, libcurl and cURL. In this paper
we use libcurl. This is a library created by Daniel
Stenberg, that allows you to connect and communi-
cate to many different types of servers with many
different types of protocols. libcurl currently sup-
ports the http, https, ftp, gopher, telnet, dict, file,
and ldap protocols. libcurl also supports HTTPS
certificates, HTTP POST, HTTP PUT, FTP uploading
(this can also be done with PHP's ftp extension),
HTTP form based upload, proxies, cookies, and us-
er+password authentication. libcurl is free, thread-
safe, IPv6 compatible, feature rich, supported and
fast. Software programmers incorporate libcurl
into their programs. All (inbound) HTTP requests
are forwarded unchanged to the Web server. Only
the (outbound) HTTP replies are inspected more
closely. Each reply is first checked on whether it
consists of HTML code (as opposed to, e.g., a file
download), and can therefore contain scripts. All
HTML pages are forwarded to the HPP tester detec-
tion component, which determines whether the
page contains any JavaScript code/polluted para-
meters, and reports its findings back to the proxy.
If, expectedly, no code is found, the page is deemed
clean and the proxy delivers it to the client, after
decoding all unique identifiers and restoring the
original legitimate script content. If, however, Java-
Script content is identified in the page the proxy
obtained from the server, it is most likely injected,
and the proxy returns a warning message to the
client, instead of the actual content. If server side
HPP attack identified in the page the proxy obtained
from server and returns alert message to client and
also record all parameters.

EVALUATION
Detection of Server side HPP: The ability of HPP
tester to correctly detect polluted parameters at

server side strongly depends on how precisely the
HPP detection component works in locating addi-
tional parameters within any url. In order to verify
that our implementation works satisfactorily also in
non-traditional ways of embedding script code and
also polluted parameters and business logic flaws,
we evaluated it on the OWASP Strawmann HPP
server side attacks (Kals et al., 2006), a collection of
various HPP attack code snippets, that cover a
broad range of nuances regarding filter evasion. All
tested examples that work in an unmodified brows-
er have been successfully detected by our HPP tes-
ter component.

Detecting Server side HPP attacks: In order to
evaluate the quality of our prototype implementa-
tion, first, we aimed to assess its ability to correctly
identify injected scripts. For that purpose, we dep-
loyed three well-known Web applications in a test
environment, all of which are vulnerable to XSS, and
applied HPP tester as their protection. That is, we
encoded all JavaScript code into unique identifiers
in the applications’ source code, and installed the
reverse proxy and HPP detection component in
front of the application server. It can record the
HTML response and request parameters so it is
very easy to find the server side HPP attacks and
also it is very easy to find the client side HPP also,
because this approach was using a new browser. So
in order to detect the polluted parameter each re-
quest will processed by this browser only. It can
handle by CURL. It is very effective than all other
techniques that are discussed in earlier. I tested the
excite search engine (Kals et al., 2006) and normal-
ly it facing the problem of content parameter pollu-
tion. But my novel approach solves this problem
and also prompts the user with alert message. It is
very effective because even though parameters are
in encoded format also it decode it. My test results
are completely detect the server side attack which
was Yahoo Mail pay load[6].For this We created a
fake mail and we are sending a pay load (Scott and
Sharp, 2002) to user. HPP tester detects the mali-
cious payload and sends the alert message to user.
And also it records a complete response message in
a file (Link 1 & 2).

Detection of XSS: The ability of HPP tester to cor-
rectly detect XSS attacks strongly depends on how
precisely the JavaScript detection component works
in locating JavaScript content within HTML code. In
order to verify, our implementation works satisfac-
torily also in non-traditional ways of embedding
script code and very effective than previous ap-
proach (Peter Wurzinger et al., 2009).

RESULTS
HPP tester adds to the latency two-fold: First, by
putting an additional stepping stone between client
and server, namely the reverse proxy, all traffic is
relayed instead of a direct transmission, and thus,

Global J. of Mech., Engg. & Comp. Sciences, 2012: 2 (2)

103 ISSN 2277-6664(Online):2249-3468(Print) - Rising Research Journal Publication

takes longer to arrive at its target. Second, and
more importantly, the HPP/JavaScript tester detec-
tion component effectively has to render each page
before it can be delivered to the client. Due to the
additional requirements for processing power in-
troduced by HPP tester, clearly, performance de-
gradation is introduced, meaning that the client will
experience higher latency when requesting content
from a HPP tester protected Web server, as com-
pared to a server that does not feature this protec-
tion. Our implementation was completely based on
the cURL. But earlier approach was python-based
reverse proxy it needs two systems to deploy
apache web server and browser. Our implementa-
tion was relatively give more speed than earlier
approach (Peter Wurzinger et al., 2009). We have
conducted experiments to measure the magnitude
of the performance penalty inflicted by our proto-
type implementation. Our experiments are degrad-
ing the performance when file size is decreasing.
The factor by which a deployment without HPP tes-
ter outperforms a HPP tester protected setup de-
creases steadily with increasing file size. This can
be attributed to the constant effort for proxy relay-
ing as well as initializing the browser.

CONCLUSION
We are presenting a server-side solution for pro-
tecting users of a web application from cross site
scripting and Http parameter pollution using re-
verse proxy by intercepting all HTML responses
and forwarding them to HPP tester consisting of full
fledged browser. In previously there is no imple-
mentation on HPP to test. HPP tester also records
all HTML responses and keeps track of number of
polluted parameters effectively. This approach was

minimal proposed solution to mitigate server side
HPP attacks.

REFERENCES
Endler. D. 2002. “The Evolution of Cross Site Script-
ing Attacks”. technical report, iDEFENSE Labs.
Gundy, M.V and H. Chen. 2009. Noncespaces: “Using
randomization to enforce information flow tracking
and thwart cross site scripting attacks”. in Proceed-
ings of the 16th Annual Network and Distributed
System Security Symposium (NDSS). February 8-11,
San Diego, CA.
Hallaraker, O and G. Vigna. 2005. ”Detecting Mali-
cious JavaScript Code in Mozilla”, in Proceedings of
the IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS). Shanghai,
China
Jovanovic, N., Kruegel, C and E. Kirda. 2006. ”Pixy: A
Static Analysis Tool for Detecting Web Application
Vulnerabilities (Short Paper)”,in IEEE Symposium
on Security and Privacy, 44: 6.
Kals, S., Kirda, E., Kruegel, C and N. Jovanovic. 2006.
”SecuBat: A Web Vulnerability Scanner” in World
Wide Web Conference, 2006. Edinburgh, Scotland.
Kirda, E., Kruegel, C., Vigna, G and N. Jovanovic.
2006. ”Noxes: A client-side solution for mitigating
cross-site scripting attacks.” in 21st ACM Sympo-
sium on Applied Computing (SAC). Dijon, France.
Peter Wurzinger, Christian Platzer, Christian Ludl,
Engin Kirda, and Christopher Kruegelk. 2009.
“SWAP: Mitigating XSS Attacks using a Reverse
Proxy“in SESS’09, IEEE, May 19, 2009, Vancouver.
Scott, D and R. Sharp. 2002. ”Abstracting Applica-
tion-level Web Security.” in 11th World Wide Web
Conference. May 7-11, Honolulu, Hawaii, USA.

Figure 1: Scheme of HPP tester Figure 2: HPP detector procedure

Link 1. Example of Content parameter pollution:
http://search.excite.it/image/?q=dog&page=1%26%71%3d%66%75%63%6b%6f%66%66%20%66%69
%6e%67%65%72%26%69%74%65%6d%3d%30
Link 2. Yahoo mail payload:
http://localhost:8080/mail/showFolder?fid=Inbox%2526cmd=fmgt.emptytrash%26DEL=1%26DelFID=Inb
ox%26cmd=fmgt.delete
